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Objective: Phosphate-bonded investments are being investigated for use as die materials
for dental superplastic forming. The effects of handling technique on the strengths of these
investments needs to be determined. The purpose was to use methods of Weibull analysis
to fit measured 4 point bend strength data and determine strength and Weibull modulus,
where modulus represents the scatter of the data. Materials and methods: Weibull
parameters were determined using methods of regression and maximum likelihood using
2 and 3 parameters. The parameters were x0 the lower bound of strength, m the Weibull
Modulus, and θ the characteristic strength. x0 is zero for the 2 parameter models. In
addition to plots of the measured data and curves generated using the Weibull parameters,
the fit of the models to the measured data was determined using correlation coefficient and
the χ2 statistic. Results: The results showed that characteristic strength was similar whether
determined using regression or maximum likelihood, 2 parameter or 3 parameter models.
However, Weibull Modulus was significantly lower for 3 parameter models than for
2 parameter models. Visually the 3 parameter models give the best fit for the majority the
data sets. Correlation coefficient, r , showed whether the method of maximum likelihood or
the method of regression was more appropriate. χ2 and correlation coefficient did not
necessarily give the same indication of goodness-of-fit of these data sets. Significance:
Strengths of dental phosphate-bonded investment materials can be described well using
weibull analysis which gives characteristic strengths and quantitative measures of scatter
of the data in the form of Weibull Modulus. These may then be used to select a handling
technique to produce dies for dental superplastic forming.
C© 2001 Kluwer Academic Publishers

1. Introduction
Dental phosphate-bonded investment (PBI) materials
are currently being used to manufacture dental pros-
theses by superplastic forming [1]. For successful su-
perplastic forming of dental components, the strength
of the PBI material is crucial if the fit of the formed
prosthesis is to be accurate. Dies must, of course, be re-
sistant to fracture but they must also be durable through-
out the forming time, which is between 20 minutes and
3 hours. Such durability requires additional resistance
to spallation.

The strength of dental investments is dependent on a
number of factors that include the chemistry and vol-
ume fraction of refractory and binder, the ratio of in-
vestment powder to liquid, the use of proprietary mixing
liquid and the handling technique [2]. Handling tech-
∗Author to whom all correspondence should be addressed.

nique has been reported to account for the incidence
of pores during investment preparation [3–5] but only
recently has the effect of pores on strength been quanti-
fied [2]. The variables that affect pore size during han-
dling include the method of mixing (by hand or using
a mechanical spatula), and the use of reduced pressure
and increased pressure for mixing and setting. In the
same study entrapped air produced porosity that was
measured for four materials using 6 different handling
techniques. The porosity was shown to affect the cold
strength of all PBI’s but some were more markedly af-
fected than others.

The strengths of the investments measured by
Juszczyk and Curtis (6) were described using the three
parameter Weibull distribution. The Weibull distribu-
tion is reported (7) to be a more accurate representation
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of strength for ceramics than the normal distribution and
is often considered to be the most appropriate distribu-
tion to represent the weakest link model which is used
to describe the influence of largest pore size on fracture
when the stress intensity around a flaw is greater than
the critical value (KIC) of the material.

The three parameters determined using the Weibull
distribution are the Characteristic strength (θ ), the
Weibull modulus m, and a scaling parameter x0. The
scaling parameter is set to zero if it is shown that the
two parameters are sufficient to describe the data ac-
curately. This is the case when the number of samples
in the study is insufficient to describe the full shape
of the distribution. There are various methods that have
been adopted to determine the three parameters (8). The
regression method and maximum likelihood method
have been compared for other data sets (9) but not for
strengths of PBI’s.

The aim of this study was to use the 2 and 3 param-
eter Weibull distributions to describe the 4-point bend
strengths of 4 investment materials and 6 handling tech-
niques using the methods of regression and maximum
likelihood and to determine which approach gave the
best fit of strength for the majority of groups.

2. Method and materials
Four investment materials, Croform WB (Davis,
Schottlander & Davis Ltd, Letchworth, UK), Rema
Exact (Dentaurum, Phorzheim, Germany), Levotherm
(Bayer Dental, Leverkusen, Germany) and Rematitan
(Dentaurum, Phorzheim, Germany), were selected for
investigation. The materials were mixed at the liquid
to investment powder ratio recommended by the man-
ufacturer using handling and setting conditions shown
in Table I and described fully elsewhere (3).

50 specimens of dimensions 100 × 15 × 15 mm3

were prepared for each material and handling tech-
nique using polyvinylsiloxane duplicating material
(Elite Double, Zhermack, Rovigo, Italy) for the mould.
Specimens were left to set for one hour from the be-
ginning of mixing and for a further 2 hours on removal
from the mould prior to testing. Four-point bend tests
at a crosshead speed of 1 mm min−1 were carried out
at 20◦C ± 2◦C using an Instron 1193 testing machine
(Instron Ltd, High Wycombe, UK). The strength at frac-
ture of all test specimens was recorded.

2.1. Determining the Weibull parameters by
the regression method

Values of strength for each group were ranked in in-
creasing order. Median ranks were assigned to these

T ABL E I Description of conditions for handling investment materials
for the measurement of 4-point bend strengths

Handling
technique Setting

ha Hand spatulation In Air
hp Hand spatulation Under pressure
hva Hand spatulation in vacuum In air
ma Mechanical spatulation in air In air
mvp Mechanical spatulation in vacuum Under pressure
mva Mechanical spatulation in vacuum In air

values using the approximation:

Median rank =
(

i − 0.3

n + 0.4

)
(1)

where i = failure order number, n = sample size
The data is plotted on scales equivalent to Weibull

probability paper with strength on the abscissa and me-
dian ranks on the ordinate:

Y = ln ln

(
1

1 − Median rank

)
(2)

X = ln(strength − x0) (3)

The least squares method is used to fit a line through
points to find the Weibull parameters. Corrections are
made to this curve by incrementing the value of x0 be-
tween zero and the lowest strength. The x0 is subtracted
from the original data set and plotted against median
ranks as before. In order to find x0 that corresponds to
the best fit, the least squares method is used to fit the
data for all values of x0 and the correlation coefficient r ,
plotted to determine maximum r (Fig. 1). The Weibull
parameters m and θ may be obtained from each of these
curves using Equations 4–6.

m =
[

n · ∑
(X · Y ) − ∑

X
∑

Y

n · ∑
X2 − ( ∑

X
)2

]
(4)

intercept =
∑

Y − m
∑

X

n
(5)

θ = exp

(
− intercept

m

)
+ x0 (6)

To obtain the coefficients for the 2 parameter model,
x0 = 0.

To obtain a further estimate of fit, the goodness of fit
parameter χ2, is determined for each data set by assign-
ing all data for one sample into four bins. A histogram

Figure 1 Variation of correlation coefficient with lower bound of
strength x0 using regression to fit the 3 parameter Weibull distribution
to 50 measurements of strength of a dental casting investment.
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is plotted of measured frequency verses strength and
a similar histogram may be plotted of estimated fre-
quency verses strength using the estimated parameters
in theWeibull density function:

f (x) =
[

m

θ − x0

(
x − x0

θ − x0

)m − 1
]

×
{

exp

[
− x − x0

θ − x0

)m
]}

(7)

χ2 is determined by comparing the measured frequen-
cies and the estimated frequencies using Equation 8:

χ2 =
∑

(observed frequencies − estimated frequencies)2

estimated frequencies

(8)

2.2. Determining the Weibull parameters by
the maximum likelihood method

It is shown by Trustrum and Jayatilaka (8) that to obtain
the equation for maximum likelihood for the 2 param-
eter model:

Pf = 1 − exp(−bσ m) (9)

Where b =
{

�
1 + (

1
m

)
σ

}m

(10)

The probability density function

f (σ ) = dP f

dσ
= bmσ (m − 1) exp(−bσ m) (11)

from which it is shown that

ln L = n ln m + n ln b + (m − 1)
∑

ln σi − b
∑

σ m
i

(12)

If ln L is differentiated with respect to m and b and
the partial derivates are equated to zero, the maximum
likelihood estimates, mL and bL, are obtained which
satisfy

n

ml
+

∑
ln σi − bL

∑
σ

mL

i ln σi = 0 (13)

n

bL
−

∑
σ

mL

i = 0 (14)

In Equations 13 and 14 bL is eliminated giving the fol-
lowing equation for mL, the Weibull Modulus.

n

mL
− n

∑
σ

mL

i ln σi∑
σ

mL

i

+
∑

ln σi = 0 (15)

The root function (Equation 16) in a PC program,
Mathcad (v8.03, Mathsoft Inc., Cambridge, MA 02142,

Figure 2 Plot used to determine Weibull Modulus for a data set using
the method of maximum likelihood. The Weibull Modulus of this data
set m = 5.258 which corresponds to maximum likelihood function = 0.

USA), was used to solve Equation 15 giving a unique
mL for any specific value of x0.

m(x0) = root

[(
n

mL
− n

∑
σ (x0)mL

i ln σ (x0)i∑
σ (x0)mL

i

+
∑

ln σ (x0)i

)
, m

]
(16)

A plot of f (m) (Equation 17) verses m shows the value
of mL (for f (m) = 0) that satifies Equation 15 (Fig. 2).

f (m) = n

m
− n

∑
σ m

i ln σi∑
σ m

i

+
∑

ln σi (17)

An x0 = 0 gives the Weibull Modulus for the 2 param-
eter model. To determine the best fit Weibull Modu-
lus for the 3 parameter model x0 was varied between
0 < x0 < minimum strength. Thus b was calculated
from Equation 10 and the ln L function maximised us-
ing Equation 12 (Fig. 3).

The characteristic strength was determined from
Equation 18.

θ = x0 + σ̄

(bσ̄ mL )
1

mL

(18)

The χ2 statistic was determined for all data sets using
the values of the parameters obtained using the maxi-
mum likelihood method and using Equations 7 and 8.

3. Results and discussion
3.1. Statistical analysis
Tables II and III show the coefficients obtained for the
2 parameter and 3 parameter models using the maxi-
mum likelihood method and the regression method and
the degree of fit compared to the measured data using
the correlation coefficient and χ2 statistic.
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T ABL E I I Coefficients for the 2 parameter models

Maximum likelihood Regression

x0 θ m r χ2 x0 θ m r χ2

cf ha 0 4.763 14.787 0.997 2.924 0 4.76 14.74 0.997 2.828
cf hp 0 5.478 10.998 0.994 4.215 0 5.462 11.648 0.994 3.999
cf hva 0 5.843 14.04 0.982 1.848 0 5.818 15.756 0.985 0.698
cf ma 0 4.942 13.099 0.982 2.767 0 4.912 15.557 0.985 3.077
cf mvp 0 8.082 15.563 0.99 3.816 0 8.122 13.127 0.986 2.242
cf mva 0 7.1 13.241 0.997 0.375 0 7.095 13.175 0.997 0.374

x0 θ m r χ2 x0 θ m r χ2

le ha 0 6.157 6.824 0.996 2.663 0 6.146 6.998 0.996 2.905
le hp 0 6.62 9.351 0.982 7.306 0 6.58 10.684 0.98 8.002
le hva 0 6.232 9.558 0.989 10.672 0 6.201 10.598 0.988 13.789
le ma 0 5.311 9.39 0.986 1.416 0 5.278 10.721 0.989 1.542
le mvp 0 7.154 12.953 0.996 0.845 0 7.158 12.521 0.996 0.644
le mva 0 6.567 10.411 0.989 2.659 0 6.63 8.378 0.982 2.053

x0 θ m r χ2 x0 θ m r χ2

re ha 0 3.16 8.119 0.994 0.473 0 3.162 7.92 0.994 0.342
re hp 0 3.648 11.27 0.996 0.996 0 3.667 9.757 0.997 0.661
re hva 0 3.541 10.821 0.995 0.522 0 3.537 10.888 0.995 0.445
re ma 0 3.358 10.91 0.992 9.413 0 3.358 10.698 0.992 8.863
re mvp 0 4.128 13.475 0.99 9.322 0 4.136 12.521 0.991 8.213
re mva 0 3.611 9.321 0.992 0.328 0 3.601 9.744 0.994 0.164

x0 θ m r χ2 x0 θ m r χ2

rt ha 0 3.747 8.625 0.981 5.059 0 3.721 9.954 0.98 6.621
rt hp 0 4.393 7.172 0.996 0.793 0 4.377 7.562 0.997 1.063
rt hva 0 3.975 6.804 0.983 1.594 0 3.945 7.818 0.989 0.72
rt ma 0 4.421 8.94 0.976 5.747 0 4.387 10.59 0.978 4.983
rt mvp 0 4.964 7.828 0.988 1.117 0 4.929 8.959 0.989 2.82
rt mva 0 4.931 8.9 0.992 4.192 0 4.909 9.725 0.992 4.826

T ABL E I I I Coefficients for the 3 parameter models

Maximum likelihood Regression

x0 θ m r χ2 x0 θ m r χ2

cf ha 2.97 4.737 5.258 0.996 3.112 3.353 4.737 3.569 0.996 2.344
cf hp 3.611 5.413 3.467 0.997 1.718 3.349 5.432 3.862 0.997 2.218
cf hva 4.324 5.778 3.407 0.992 0.62 4.001 5.792 4.267 0.991 0.589
cf ma 3.94 4.855 2.407 0.994 0.624 3.833 4.868 2.716 0.994 0.576
cf mvp −73.313 8.104 160.095 0.992 2.801 −57000 8.125 102800 0.99 1.93
cf mva 3.072 7.077 7.346 0.998 0.186 0.796 7.094 11.567 0.997 0.356

x0 θ m r χ2 x0 θ m r χ2

le ha 3.436 6.04 2.702 0.993 0.915 3.617 6.054 2.144 0.99 0.264
le hp 5.032 6.438 1.901 0.992 2.748 4.959 6.457 1.965 0.993 2.614
le hva 4.634 6.082 2.071 0.995 5.91 4.577 6.099 2.05 0.995 4.666
le ma 3.633 5.213 2.737 0.994 0.13 3.389 5.231 3.254 0.994 0.12
le mvp 2.098 7.141 9.032 0.996 0.932 0.842 7.156 10.194 0.996 0.625
le mva −87.858 6.606 154.844 0.992 1.332 −13100 6.631 19710 0.99 1.027

x0 θ m r χ2 x0 θ m r χ2

re ha 0.752 3.149 6.106 0.994 0.786 −1.185 3.165 11.382 0.993 0.372
re hp −51.251 3.666 175.86 0.996 0.962 −3267 3.671 9986 0.996 0.774
re hva 1.764 3.519 5.208 0.994 0.108 1.709 3.526 5.081 0.995 0.42
re ma 1.888 3.333 4.462 0.992 9.464 2.235 3.33 2.807 0.992 7.037
re mvp −5.273 4.137 31.264 0.991 9.286 0.953 4.134 9.368 0.991 8.095
re mva 1.896 3.577 4.257 0.993 0.131 1.282 3.594 5.869 0.993 0.142

x0 θ m r χ2 x0 θ m r χ2

rt ha 2.679 3.653 2.176 0.992 0.38 2.607 3.665 2.312 0.992 0.493
rt hp 2.175 4.333 3.419 0.996 0.998 1.89 4.353 3.796 0.996 0.694
rt hva 2.174 3.898 2.967 0.983 1.809 1.804 3.921 3.738 0.985 1.313
rt ma 3.145 4.319 2.364 0.993 0.977 2.977 4.336 2.824 0.991 1.378
rt mvp 3.172 4.859 2.606 0.996 0.325 2.952 4.879 2.968 0.995 0.245
rt mva 3.531 4.814 2.137 0.996 2.738 3.504 4.828 2.007 0.996 2.502

The accuracy with which these models agree with
the measured data is assessed using three methods:
(1) visual plotting (2) determination of the correlation
coefficient (3) determination of the χ2 for goodness-
of-fit.

3.1.1. Plotting the data and interpreting
goodness-of-fit visually

Figs 4–9 show the measured data and best-fit curves for
all handling techniques and the four investment materi-
als. Excellent fit is observed visually for the 3 parameter
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Figure 3 The variation of the log likelihood function with lower bound
of strength x0. Such a plot is used to determine the lower bound of
strength x0 where the log likelihood function is maximised.

(a)

(b)

Figure 4 Plot of measured strength for all materials using the HA han-
dling technique and curves generated from the measured data points us-
ing (a) 2 Weibull parameters (b) 3 Weibull parameters. The parameters
of the distribution function were determined using methods of regression
and maximum likelihood.

Weibull model determined by maximum likelihood and
regression in most cases and clearly indicates that visu-
ally the 3 parameter distributions are the more appro-
priate models to describe the data.

(a)

(b)

Figure 5 Plot of measured strength for all materials using the HP han-
dling technique and curves generated from the measured data points us-
ing (a) 2 Weibull parameters (b) 3 Weibull parameters. The parameters
of the distribution function were determined using methods of regression
and maximum likelihood.

Examples of data sets that fit poorly by visual in-
spection are indicated in Table IV and are mainly for
the 2 parameter models. Poor fit may mean that the
models fail to pass through the data points for the
lowest strengths and include the data of le-ha and rt-
mva. Poor fit is also exhibited for rt-ha, le-hp and
others for which the models neither fit the lowest
strengths nor the mid-range strengths. There are still
others such as rt-hva that are not fit well at the higher
strengths.

For the 3 parameter models, x0 is determined in addi-
tion to characteristic strength and Weibull modulus. In
most cases 3 parameters should result in significantly
better fit than for 2 parameters and this is clearly ob-
served in most cases. In addition, x0 may be interpreted
to have a physical significance and represents a lower
bound of strength. However, if x0 is determined to be
negative, shown by the symbol −x0 in Table IV for data
sets cf-mvp, le-mva, re-hp and re-mvp, this sometimes
indicates a shelf-life for the material, specimen or com-
ponent. Since the majority of data sets do not display
this same characteristic then in these cases a negative
x0 is taken to be an anomaly and may fit the data only
partially better than the 2 parameter models as for cf-
mvp and re-mvp. Of course, despite a negative x0, the
models may still fit the data well as shown for cf-mvp
(ml), le-mva (ml) and re-mvp (ml).
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T ABL E IV Summary of fit of data sets (1) visual inspection—poor fit is indicated by a tick, (2) correlation coefficient <0.9855—poor fit is
indicated by an r (3) χ2 < 3.841 (3 parameter) and χ2 < 5.991 (2 parameter)—poor fit is indicated by χ2. The symbol −x0 represents values of
x0 < 0. The symbol ⊗ represents the most appropriate model to fit the data

2 parameter models 3 parameter models

Handling Maximum Maximum
Material technique likelihood Regression likelihood Regression

Croform (cf ) ha ⊗ ⊗
Croform (cf ) hp ⊗ ⊗
Croform (cf ) hva

√
r

√
r ⊗

Croform (cf ) ma
√

r
√

r ⊗ ⊗
Croform (cf ) mvp r ⊗ − x0 −x0

Croform (cf ) mva ⊗
Levotherm (le) ha ⊗√ √ √ √
Levotherm (le) hp

√
rχ2 √

rχ2 ⊗
Levotherm (le) hva

√
χ2 √

χ2 ⊗ χ2

Levotherm (le) ma
√

r
√ ⊗ ⊗

Levotherm (le) mvp ⊗ ⊗ ⊗ ⊗
Levotherm (le) mva

√ √
r ⊗ − x0 −x0

Rema Exact (re) ha ⊗ ⊗
Rema Exact (re) hp ⊗ −x0 −x0

Rema Exact (re) hva ⊗ ⊗
Rema Exact (re) ma ⊗χ2 ⊗χ2 ⊗χ2 ⊗χ2

Rema Exact (re) mvp χ2 ⊗χ2 ⊗χ2 − x0 ⊗χ2

Rema Exact (re) mva ⊗
Rematitan (rt) ha

√
r

√
rχ2 ⊗ ⊗

Rematitan (rt) hp ⊗
Rematitan (rt) hva

√
r ⊗√ √

r
√

r
Rematitan (rt) ma

√
r

√
r ⊗

Rematitan (rt) mvp
√ √ ⊗

Rematitan (rt) mva
√ √ ⊗ ⊗

No. best fit according to 5/24 9/24 16/24 11/24
highest correlation coefficient

No. Visually poor 12/24 12/24 2/24 2/24

3.1.2. Goodness-of-fit by determining the
correlation coefficient the
chi-squared statistic

The correlation coefficient and chi-squared statistic can
be used to compare the distribution functions of the ac-
tual data and the 2 and 3 parameter Weibull distribu-
tion functions. They may be plotted for each data set as
shown in Fig. 10 (2 parameter models) and Fig. 11 (3
parameter models). There seems to be greater scatter
for the 2 parameter models than the 3 parameter mod-
els. For the 3 parameter models all correlation coeffi-
cients are greater than 0.9855, apart from the data set
for rt hva and all values of χ2 are less than 3.841 (2 de-
grees of freedom) and 5.991 (3 degrees of freedom),
respectively, apart from the data sets for le-hva, re-ma
and re-mvp.

The correlation coefficient and chi-squared statistic
are used here to compare the distribution functions of
the data sets with the 2 and 3 parameter Weibull dis-
tribution functions. The 2 and 3 parameter distribution
functions are generated using lower bound of strength
X0, characteristic strength θ , and weibull modulus m
shown in Tables II and III.

Using regression the residuals indicate how all values
of measured strengths deviate from the Weibull dis-
tributions, whereas using χ2 only four residuals are
obtained (Tables V and VI) and the data may not be
distributed in the expected manner over the range of
strengths that represent the four bins of a histogram.
Large χ2’s do not necessarily indicate that the over-

all fit is poor e.g. two handling techniques, namely cf-
mva and re-ma show good overall fit of the models
(Figs 7, 9) but once the data is grouped into 4 bins
small residuals for cf-mva result in a low χ2, whereas
for re-ma, large residuals result in a high χ2 (Fig. 12). In
the case of re-ma this may indicate that the data would
be better fit using an alternative distribution.

3.1.3. Differences between characteristic
strength and Weibull Modulus

By examining characteristic strength in Tables II and
III it is apparent that characteristic strength does not
change significantly when determined by the 2 or 3 pa-
rameter models (Fig. 13). However, there is a consid-
erable disparity between Weibull Modulus computed
for the 2 and 3 parameter models (Fig. 14). It is essen-
tial that modulus is determined with confidence since
it gives an indication of the reliability of the mate-
rial. High values of Weibull Modulus are generally ob-
tained for engineering ceramics for which the fracture
strengths show less scatter due to the ability of the pro-
cessing route to remove defects such as porosity. The
2 parameter regression and maximum likelihood mod-
els generate Weibull modulii for the investments that
would be abnormally high and would indicate a better
material (less scatter in strength) than is actually the
case e.g. Compare Wiebull Modulus for cf-ha at 14.74
(2 parameter regression) with cf-ha at 3.569 (3 param-
eter regression). Greater confidence in the 3 parameter
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T ABL E V Residuals for 2 parameter models

Maximum likelihood Regression

cf le re rt cf le re rt

ha 3.407 4.049 0.948 4.612 3.350 4.167 0.783 5.139
−1.995 −0.524 −1.251 2.396 −2.071 −0.746 −1.309 0.476
−1.061 −3.230 −0.406 −6.533 −1.045 −3.479 0.067 −7.085
−0.351 −0.296 0.709 −0.476 −0.235 0.058 0.459 1.470

hp −0.150 7.610 −0.078 1.983 0.078 7.934 −0.673 2.299
6.439 −3.319 1.676 −0.811 5.855 −5.287 0.592 −1.156

−5.722 −2.651 −2.992 −0.317 −6.329 −2.691 −1.834 −1.052
−0.567 −1.641 1.394 −0.855 0.396 0.044 1.914 −0.091

hva −0.328 8.390 −0.433 0.863 0.250 8.758 −0.431 1.734
2.832 −5.052 2.054 0.448 2.225 −6.180 1.953 −0.845
0.888 −4.065 −0.362 1.503 −0.945 −4.876 −0.473 −0.001

−3.391 0.726 −1.258 −2.814 −1.529 2.297 −1.048 −0.888
ma 0.422 0.107 5.010 1.612 1.003 0.796 4.866 2.354

5.083 3.742 −1.427 6.700 2.832 2.616 −1.433 4.808
−4.595 −2.746 −8.011 −6.333 −5.421 −4.332 −7.784 −7.658
−0.910 −1.103 4.428 −1.979 1.585 0.920 4.350 0.497

mvp 2.127 1.599 0.451 0.701 1.277 1.375 0.020 1.378
−3.074 −0.917 5.098 2.606 −3.797 −1.053 4.690 0.971
−1.172 −0.239 −10.195 −3.543 1.576 0.212 −9.471 −4.442

2.119 −0.443 4.646 0.235 0.943 −0.534 4.760 2.094
mva −0.791 1.357 0.263 5.341 −0.843 0.232 0.494 5.657

1.228 −2.963 1.185 −2.946 1.135 −4.060 0.848 −3.884
−0.061 −1.162 −0.165 −0.912 −0.024 2.120 −0.791 −1.624
−0.375 2.767 −1.283 −1.483 −0.268 1.709 −0.551 −0.150

T ABL E VI Residuals for 3 parameter models

Maximum likelihood Regression

cf le re rt cf le re rt

ha 3.110 2.102 1.101 1.276 1.966 0.191 0.882 1.420
−3.622 −2.535 −1.844 0.039 −4.534 −1.622 −0.847 0.534
−0.770 −0.399 −0.288 −1.664 0.908 1.197 −0.695 −2.033

1.282 0.832 1.031 0.349 1.660 0.233 0.660 0.078
hp −1.391 2.498 −0.346 1.622 −1.487 2.638 −0.573 1.380

4.137 −4.530 2.079 −3.002 4.939 −4.102 1.739 −2.278
−3.092 3.174 −1.676 1.244 −3.204 2.873 −1.255 1.276

0.346 −1.142 −0.057 0.136 −0.248 −1.409 0.089 −0.378
hva −0.478 4.633 −0.466 0.491 −0.472 4.195 −0.926 0.786

−0.590 −7.770 0.594 −2.462 0.313 −7.009 0.772 −1.665
2.438 0.892 0.376 3.753 1.850 1.007 1.247 2.700

−1.370 2.245 −0.504 −1.782 −1.692 1.807 −1.093 −1.822
ma −2.270 −0.815 4.213 −0.594 −1.913 −0.565 2.239 0.097

1.724 0.160 −3.035 3.317 2.168 0.825 −3.660 3.593
0.258 0.176 −7.087 −2.312 −0.389 −0.608 −4.888 −3.293
0.289 0.480 5.908 −0.410 0.135 0.348 6.308 −0.397

mvp 1.972 1.665 0.407 −0.924 1.539 1.327 −0.057 −0.649
−2.545 −1.335 5.511 −0.149 −2.856 −1.199 4.354 0.369
−0.704 −0.333 −9.805 0.095 0.867 0.298 −9.486 −0.569

1.276 0.055 3.887 0.978 0.451 −0.426 5.187 0.849
mva −0.626 1.085 0.037 1.617 −0.863 0.675 0.056 0.758

0.483 −2.183 −0.732 −5.334 1.004 −2.517 0.288 −4.357
−0.262 −0.365 1.158 3.740 0.083 1.077 0.569 4.181

0.406 1.464 −0.464 −0.023 −0.224 0.765 −0.913 −0.581

models is proposed since fit for the majority of data
sets is visually excellent and this is confirmed quanti-
tatively using correlation coefficient as the measure of
goodness-of-fit.

3.2. Strength and scatter of data
Since it has been shown that the characteristic strength
may be determined reliably using either maximum

likelihood or regression techniques then some comment
should be made about the differences in strength that
were observed when comparing handling techniques
and materials. The following trends are discussed us-
ing the 3 parameter models since these have been shown
to give better fit overall.

During mixing, air bubbles are introduced that cre-
ate voids in these materials. The voids result in bubbles
within the investment and on the wax pattern. On the
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(a)

(b)

Figure 6 Plot of measured strength for all materials using the HVA han-
dling technique and curves generated from the measured data points us-
ing (a) 2 Weibull parameters (b) 3 Weibull parameters. The parameters
of the distribution function were determined using methods of regression
and maximum likelihood.

cast metal these voids result in nodules that must be
removed by hand during finishing. The MVP and MVA
handling techniques are the most effective methods of
removing these bubbles. An additional benefit of re-
moving these bubbles is an increase in the strength
of the as-cast investment at room temperature. This
increase in strength is not a feature of all the invest-
ments tested. Croform WB shows a marked increase in
strength when processed by the MVP and MVA tech-
niques but the Levotherm, Rema Exact and Rematitan
investments seem to be more insensitive to handling
technique despite MVP resulting in highest strength
for all materials. Similar trends may be observed for
the scatter of the data. This is shown by the values of
Weibull modulus. In the case of Croform WB, Weibull
Modulii of 7.1 and 8.1 for MVP and MVA were de-
termined compared with values below 5.7 for other
handling techniques. Similar trends were observed for
Levotherm but not for Rema Exact or Rematitan. The
scatter of data for Rematitan seemed most insensitive
to handling technique and Weibull Modulus remained
low and relatively constant below 3.8. Higher values of
Weibull Modulus are desirable for engineering appli-
cations since reliability is greater at higher Modulus.

Furthermore, it is important to speculate about the
causes of the scatter of the data. The discussion has con-
centrated on the presence of pores or voids introduced
during handling. It has been demonstrated that pore

(a)

(b)

Figure 7 Plot of measured strength for all materials using the MA han-
dling technique and curves generated from the measured data points us-
ing (a) 2 Weibull parameters (b) 3 Weibull parameters. The parameters
of the distribution function were determined using methods of regression
and maximum likelihood.

sizes can be reduced by the use of mechanical spatula-
tion in a vacuum coupled with setting under pressure.
The effect of this reduction in pore size was an increase
in strength and a reduction, on the whole, in the scatter
of the data. However, there are other possible causes
of scatter. Two such causes are, on the one hand, the
number of pores in the sample, and on the other the
position of a pore in the sample.

In the four point bend test the stress on the sample
between the two central loading knife-edges is constant
but the top of the specimen above the midline is in com-
pression whilst the lower portion below the midline is in
tension. Since pores do not have an effect on the strength
of the material in compression, pores above the midline
of the specimen may be disregarded as crack initiators.
However, in the lower section of the specimen pores
will result in fracture due to critical pore size effects.
Similar size pores on or near the lower surface will
probably be more instrumental in initiating cracks than
those closer to the midline of the specimen. The proba-
bility of fracture due to the presence of pores would be
that much greater the more pores of a critical size that
there are present in the sample, although only one is
necessary to actually cause fracture. Thus, apart from
the presence of pores of different sizes, an additional
cause of the scatter would be the depth of the largest
pore from the surface in one specimen compared with
another.
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(a)

(b)

Figure 8 Plot of measured strength for all materials using the MVP
handling technique and curves generated from the measured data points
using (a) 2 Weibull parameters (b) 3 Weibull parameters. The parameters
of the distribution function were determined using methods of regression
and maximum likelihood.

(a)

(b)

Figure 9 Plot of measured strength for all materials using the MVA
handling technique and curves generated from the measured data points
using (a) 2 Weibull parameters (b) 3 Weibull parameters. The parameters
of the distribution function were determined using methods of regression
and maximum likelihood.

Figure 10 Correlation coefficients and χ2’s of all materials and handling
techniques indicating the degree of goodness-of-fit of the 2 parameter
Weibull distribution to the measured data.

Figure 11 Correlation coefficients and χ2’s of all materials and handling
techniques indicating the degree of goodness-of-fit of the 3 parameter
Weibull distribution to the measured data.

The arguments outlined above may also be applied
to the ‘holes’ created in the materials by the refractory
particles. The constituents of phosphate-bonded invest-
ments are refractory particles of silica and a matrix of
magnesium ammonium phosphate. The sizes of the re-
fractory particles in the four investments were mea-
sured using sieves of mesh sizes ranging from 45 µm
to 710 µm. Although the majority of particles in all
investments were found to be between 125 µm and
150 µm, a small percentage (<2.5 %) were larger
than 700 µm. The largest voids found in specimens
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Figure 12 Histograms for the mva handling technique for Croform WB (a–d) and the ma handling technique for Rema Exact (e–h) generated by
dividing the measured data into 4 bins. Estimated frequencies using the weibull distributions are indicated and the shapes of the corresponding
distributions drawn. 2 and 3 parameter Weibull distributions are shown and parameters were determined using methods of regression and maximum
likelihood.

processed by the HA handling technique were larger
than any refractory particle and up to 2500 µm in dia-
meter. On setting and prior to heating the refractory
particles in phosphate-bonded investments are not be-
lieved to create a bond with the matrix phase (10). Thus,
the interface between refractory particle and matrix is
not capable of transferring stress. This means that the
refractory particles act as stress raisers in the materi-
als, much like the voids. Thus, it is of interest to com-
pare pore or void sizes with refractory particle sizes. It
has already been noted that, for the HA handing tech-
niques, pore sizes are greater than refractory particle

sizes but when pores are removed through mechanical
spatulation and setting under pressure, refractory par-
ticles are larger than the pores that remain. In fact, it
has been shown that for pore sizes less than 400 µm
the mechanism of fracture may change and could be
attributed to refractory particle size rather than pore
size (2).

On heating this scenario would be expected to change
since bonds form between the matrix reaction products
and the refractory particles and only air bubbles would
be expected to contribute to the critical hole size effect.
Thus, if pores are virtually eliminated through use of
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Figure 13 Characteristic strengths for all materials and handling tech-
niques determined using methods of regression and maximum likelihood
and 2 and 3 parameter Weibull distributions.

Figure 14 Weibull modulii for all materials and handling techniques
determined using methods of regression and maximum likelihood and 2
and 3 parameter Weibull distributions.

an appropriate handling technique, then strength would
be limited by the resistance of the matrix to crack ini-
tiation and propagation. The refractory particles would
still have a role to play since they could arrest cracks

propagating through the matrix. Such mechanisms have
been used in dental composites to improve resistance
to crack propagation.

Preliminary tests of hot strength have been carried
out at 900◦C and it was found that the Croform and
Levotherm materials retain the pores that were incor-
porated during processing. There does not seem to be a
sintering affect over the time periods that these mould
materials would be used for casting or superplastic
forming. A difference in strength between the HA and
MVP processes materials was still observed. Likewise,
the Rematitan materials seemed to be as insensitive to
the presence of pores as at room temperature. How-
ever, in the case of Rema Exact, in particular, the hot
strength recorded for the two handling techniques was
identical, showing that the presence of pores had be-
come insignificant at these void concentrations.

4. Conclusions
1. Two and three parameter Weibull distributions have
been shown to be appropriate descriptions of the
4-point bend strength of four dental casting investments
prepared using six different handling techniques.

2. Visually the 3 parameter distributions show a better
fit than the 2 parameter distributions.

3. Correlation coefficient has been used to identify
the distribution that best describes each data set.

4. The introduction of air bubbles or pores during
mixing and setting has a significant effect on strength
at room temperature for all materials whereas at high
temperatures the strength of some materials is not ap-
parently influenced by the presence or otherwise of the
same pores.

5. The MVP handling technique has the effect of in-
creasing strength in all materials at room temperature
by the removal of air bubbles or pores but in some ma-
terials it also has the effect of markedly reducing the
scatter in the results. In other materials scatter is un-
affected by handling technique and remains relatively
high.
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